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Discrete capacity limits in visual working memory
Keisuke Fukuda, Edward Awh and Edward K Vogel
The amount of information we can actively maintain ‘in mind’ is

very limited. This capacity limitation, known as working

memory (WM) capacity, has been of great interest because of

its wide scope influence on the variety of intellectual abilities.

Recently, there has been an ongoing debate about how this

capacity should be best characterized. One viewpoint argues

that WM capacity is allocated in a discrete fashion with an

upper limit of three to four representations. An alternative

viewpoint argues that the capacity can be allocated in a

continuous fashion with no upper limit in the number of

representations. In this article, we will review recent

neurobiological and behavioral evidence that has helped shape

the debate regarding one of the more central mechanisms in

cognitive neuroscience.
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Our limited ability to actively hold information ‘in mind’ is

facilitated by the working memory (WM) system. WM is

known to play a central role in most cognitive processes as a

form of mental workspace. WM performance is severely

disrupted in many psychiatric and neurological popu-

lations, and even within a healthy population individual

differences in WM ability are strongly predictive of intelli-

gence and reasoning ability. Consequently, many neuros-

cientists and psychologists have been motivated to better

understand this central cognitive limitation. Here, we

discuss an ongoing debate regarding how to best charac-

terize the capacity limits of WM and how recent advances

in neurophysiology have helped shape the debate.

Capacity limits: discrete slots or flexible
resource?
Over the past several decades, both behavioral and neural

studies have suggested a capacity limit of only about three
www.sciencedirect.com
to four items in WM [1–7,8�,9,10�]. For example, Luck

and Vogel [3] asked observers to detect supra-threshold

changes among arrays of colored squares following a brief

retention period, and found monotonic declines in change

detection as the number of items to be stored increased.

On the basis of the observers’ accuracy, they concluded

that observers could hold about four items worth of

information in WM (Figure 1). Importantly, the same

apparent limit was observed regardless of whether obser-

vers had to maintain a single feature (e.g. color) or

multiple features (e.g. color and orientation) from each

item, suggesting that capacity limits in WM are better

defined by the maximum number of items that can be

represented, rather than by the total quantity of infor-

mation. This kind of item-based limit in WM falls in line

with so-called discrete resource or ‘slot’ models of capacity

in WM. The discrete resource view suggests that

resources for storage are quantized such that any item

represented in WM must be assigned to an available slot.

Thus, this view predicts that only a subset of items will be

represented from supracapacity displays, while no infor-

mation will be retained for the remaining items [11�]. By

contrast, flexible resource models of capacity suggest that

mnemonic resources can be allocated in a continuous

fashion, without set limits on the number of items that

can be represented [12�,13]. Essentially, this view pro-

poses that each item in a display receives a share of WM

resources and that performance is limited for arrays with

large numbers of items because each individual item

receives only a small proportion of the available resources.

Thus, these models suggest that there is no upper limit on

the number of items that can be actively held in WM.

An extreme version of the discrete resource model might

claim that observers can maintain up to four perfect

representations in WM, with all errors in a memory task

accounted for by monotonic declines as set size increases

beyond this ‘magic’ number. This caricature, however,

overlooks multiple demonstrations that representations in

WM have limited resolution or clarity. Discrete resource

models can accommodate this result by acknowledging

that slots do not have unlimited resolving power

[2,11�,14,15]. For example, it has been convincingly

demonstrated that change detection performance is worse

with complex stimuli [1,16]. Although this result may

appear to suggest that smaller numbers of items can be

represented as stimulus complexity rises, subsequent

studies have shown that declines in change detection

performance with complex stimuli may be better

explained by high similarity between the items in com-

plex stimulus categories. These studies showed that

increased sample-test similarity leads to reduced change
Current Opinion in Neurobiology 2010, 20:177–182
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Figure 1

(a) Typical change detection stimuli and procedure. Subjects must judge

whether the colors in the test array are the same or different from those

originally presented in the memory array. (b) Average accuracy on

change detection as a function of number of items (adapted from Luck

and Vogel [3]).
detection performance because of errors in detecting

relatively small changes, rather than because of a

reduction in the total number of items represented. Thus,

errors in detecting such changes may be best explained by

limited mnemonic resolution rather than by the storage of

smaller numbers of items [2].

Interactions between number and resolution
in WM
One empirical pattern that has sometimes been argued to

support flexible resource accounts is the inverse relation-

ship between resolution in WM and set size [11�,12�,14].

At first glance, this result is naturally explained by flexible

resource models that posit a smaller proportion of

resources for each item as set size increases. However,

the inverse relationship between set size and WM resol-

ution does not distinguish between discrete and flexible

resource models, given that both models allow for vari-

ations in mnemonic resolution in subspan displays. For

example, Barton et al. [14] proposed that a limited number

of discrete ‘slots’ may determine the maximum number

of representations that can be held in WM, while a

separate resource determining mnemonic resolution is

divided among the currently active slots. Thus, given that

both models can accommodate an inverse relationship

between resolution and set size in subspan arrays, the

most diagnostic aspect of this function comes after the
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putative item limit has been exceeded. Only the discrete

resource model predicts that resolution should reach a

stable lower bound after a specific item limit, because

those models assume that displays exceeding that limit do

not actually lead to the storage of additional items. In line

with this prediction, Zhang and Luck [11�] observed that

resolution remained stable for array sizes that exceed the

item limit in their study, in line with the predictions of the

discrete resource model (Figure 2). This is still a con-

troversial issue, however. For example, Bays and Husain

[12�] measured mnemonic resolution in a spatial WM

task, and concluded that there was ‘no evidence for any

discontinuity in the region of four items.’ However, one

caveat that may apply to both of these models is the fact

that there are strong variations across individuals in their

performance in these memory tasks [10�,17,18]. Given

that various studies have found that individual capacity

estimates range from around one to six items, it may be

overly simplistic to search for a single set size at which

aggregate measures of resolution reach a stable asymp-

tote. From this perspective, a convincing test of whether

mnemonic resolution reaches an asymptote as at a specific

item limit needs to take into account individual variations

in capacity.

Another reason to give careful consideration to individual

differences is that the discrete and flexible resource

models make different predictions regarding whether

number and resolution in WM will co-vary across indi-

viduals. Specifically, flexible resource models suggest that

both aspects of memory are determined by a single pool of

resources. If so, then individuals with ample mnemonic

resources should excel in terms of the maximum number

of items that can be represented, as well as the resolution

of those online representations. Awh et al. [2] tested this

prediction by obtaining separate measures of number and

resolution in WM across stimuli that varied in complexity.

This analysis revealed that the maximum number of

stimuli that could be maintained was highly correlated

across both simple and complex stimuli, suggesting that a

common slot system may constrain how many items can

be stored, regardless of stimulus complexity. By contrast,

there was no correlation between the number of items

that could be maintained and the resolution of the stored

representations, despite evidence supporting the

reliability of the measures. Thus, number and resolution

in WM seem to be best accounted for by a two-factor

model in which they represent distinct aspects of memory

ability. This two-factor model contradicts flexible

resource models that posit a single resource to explain

both aspects of memory performance.

Neural evidence for WM capacity limits
The most important criterion for WM is that it is an

‘online’ memory system. This aspect is often ambiguous

in behavioral measures partly because it is often difficult

to assess whether performance was primarily determined
www.sciencedirect.com
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Figure 2

(a) Visual WM recall procedure (adapted from Zhang and Luck [11�]). Subjects must remember the colors in the sample array across a 900 ms retention

interval. At test, subjects must report the original color of the cued item by clicking on the color wheel. (b) Theoretical predictions of a mixture model of

recall performance. This combines a Gaussian model of the resolution of the items held in WM (centered around the original color value) and a uniform

distribution for the items that were not stored in memory. (c) Results comparing set size 3 and 6. Note that while the standard deviation (reflecting the

resolution) is equivalent, the tails of the function (reflecting missing items) increase for set size 6.
by active maintenance in WM or if ‘offline’ long-term

memory representations that were retrieved at test were

also contributing to the subject’s behavioral report. Here,

neural measures of WM have a critical advantage because

they can isolate sustained activity that occurs exclusively

during the maintenance period. For example, Vogel and

Machizawa [19] recorded EEG from subjects as they

performed a lateralized WM change detection task in

which they must remember arrays of simple objects

presented in a cued hemifield. 300 ms following the onset

of the memory array, they observed a large, negative-

voltage wave over posterior contralateral electrodes that

persisted throughout the maintenance period. This con-

tralateral delay activity (CDA) has been shown to be

strongly modulated by the number of items that must

be remembered. It monotonically rises in amplitude from

one to three items, reaching an asymptote at approxi-

mately four items (Figure 3). That is, this activity reaches

a limit at approximately the same point as behavioral

estimates predict that capacity is exhausted. Indeed, the

specific point at which the CDA reaches asymptote is

different for each subject depending upon his or her WM

capacity. Thus, this ‘online’ measure of WM is highly

sensitive to individual differences in behavioral WM

performance. In subsequent studies, the amplitude of

this activity has been found to be unaffected by a number
www.sciencedirect.com
of factors such as object size and spacing, perceptual

difficulty, number of locations, task difficulty, and arousal

[20,21]. Similarly, recent WM neuroimaging studies have

shown that activation in the human intra-parietal sulcus

also increases with set size and reaches an asymptote at

approximately four items for both simple and complex

items [5,7,22]. Together, results from two separate neural

techniques provide similar ‘online’ measures of a limit on

the maximum number of items that can be simul-

taneously represented in WM.

The patterns of neural activity described above are most

easily explained by discrete resource models of WM

because they show evidence that capacity is exhausted

for arrays of four items and that these limits can be

measured during the active maintenance stage of the task.

It is not clear how a flexible resource model could account

for the finding that activity asymptotes at a fixed number

of items because they propose that all items in a display

are equally represented in WM, just with dwindling levels

of precision. Furthermore, the basic finding that the CDA

is modulated by a number of items is also challenging to

these models. In particular, flexible resource models

generally explain that superior mnemonic precision for

one-item arrays over three-item arrays is because all WM

resources can be dedicated to that single item in memory
Current Opinion in Neurobiology 2010, 20:177–182
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Figure 3

(a) The contralateral delay activity (CDA). ERPs time-locked to the onset of the memory array in a bilateral change detection task. Posterior electrodes

are averaged together in terms of whether they are ipsilateral or contralateral with respect to the visual field of the remembered items. (b) Mean

amplitude of CDA as a function of number of items in memory array. (c) The correlation of CDA asymptote and individual memory capacity (adapted

from Vogel and Machizawa [19]).
rather than being divided across three items. Thus, the

same amount of WM resources are always consumed

irrespective of how many items are being remembered

on that trial, which results in varying levels of precision for

report. However, if this were correct, then one would

expect that a neural measure of WM resources should

show equivalent levels of activation for one-item and

three-item arrays, but this is not the case. These models

could potentially account for neural set size effects by

postulating that when the objects do not require high

levels of precision, some proportion of WM resources can

be held in reserve. This would predict that objects that

require high levels of mnemonic precision should show

little or no modulation of the CDA across different set

sizes. Recently, we tested this prediction by comparing

CDA amplitudes for arrays of brightly colored squares

with arrays of complex abstract shapes [23]. Figure 4

shows that while behavioral performance affirmed that

the complex items were substantially more difficult to

remember accurately, the CDA set size effects were

identical for both complex and simple objects. Thus,

corroborating the behavioral findings of Awh et al. [2]

these results suggest that an equivalent number of items

can be stored in visual WM, regardless of complexity

[24,25�].

Neural oscillations and capacity limits
A specific neurophysiological mechanism for WM

capacity limits has been proposed by computational

models that utilize neural oscillations as the primary

representational scheme for information being held in

WM. These models propose that each item held in WM is

represented through a unique pattern of synchronous

firing across large populations of neurons with each coding

different attributes of the item (e.g. color, shape, and
Current Opinion in Neurobiology 2010, 20:177–182
position). When multiple items must be held simul-

taneously in WM, the oscillatory activity for each item

must be kept ‘out of phase’ with the others in memory so

they will not interfere with one another. For example,

Lisman and Idiart [26] proposed that the number of high

frequency EEG cycles (e.g. gamma band, 25–100 Hz)

that can be embedded in the low frequency EEG cycle

(e.g. theta band, 4–7 Hz) determines the number of

separated representations that can be held in WM without

interference. Using a similar oscillatory modeling

approach, Raffone and Wolters [27] suggested that the

maximal number of asynchronous representations was

about three to four items. One compelling aspect of these

oscillatory models is that a discrete, item-based WM

capacity limit may ultimately be due to a basic bio-

physical limitation surrounding how represented infor-

mation can be segregated in the brain.

Although these oscillatory models do provide a plausible

neurophysiological explanation of capacity limits, to date

there has been scant direct evidence that the brain

actually employs such a phase-coding scheme in WM.

However, in the last year there have been multiple

studies that have begun to do just that. For example,

Siegel et al. [28] found that when monkeys performed a

two-item sequential STM task, gamma oscillations over

prefrontal cortex contained information about each object

in separate phase orientations. That is, item 1 was always

coded in a specific range of phase orientations that did not

overlap with item 2. However, on trials when the monkey

made an error, these phase orientations did indeed over-

lap. While these results alone are not sufficient to confirm

oscillatory capacity limit models, they do provide the first

critical demonstration that the brain uses phase coding

during WM tasks. With humans, multiple labs have
www.sciencedirect.com
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Figure 4

(a) Example stimuli for colored squares and complex items. The memory arrays consisted of one, two, or three items. (b) CDA difference waves across

set sizes for colors and complex items. (c) Average change detection accuracy for the two conditions across set sizes. (d) Mean amplitude of the CDA

for both conditions across the three set sizes.
begun taking an oscillatory approach to characterizing the

CDA, which we have shown to be highly sensitive to

capacity limitations. One challenge to this is that ERP

components like the CDA are measured by averaging

together many trials, which would likely wash out any

oscillatory activity that was not phase-locked to the

stimulus. However, Jensen and colleagues [29,30] have

recently demonstrated that the posterior alpha band

(�10 Hz) is often modulated asymmetrically. That is,

alpha amplitude changes are reflected more in the peaks

of the oscillation than in the troughs, which often remain

unchanged. The consequence of such an asymmetrical

modulation is that it results in a sustained slow wave,

which is likely the source signal of the CDA. Consistent

with this alpha-power viewpoint, multiple studies have

recently shown that visual WM load modulates alpha

power and that the magnitude of this modulation appears

to predict individual differences in WM capacity [31,32].

Conclusions
The debate between discrete and continuous models of

WM capacity is not likely to end soon, partly because as

the models have become more complex their predictions

about behavior have become increasingly similar. How-
www.sciencedirect.com
ever, we are optimistic that recent developments of

precise neural measures of WM will help to better dis-

tinguish between these two models. To us, the CDA

appears to provide a powerful ‘online’ measure of the

number of items that are currently in WM and thus

provides strong evidence for discrete capacity models.

New work is beginning to characterize the underlying

oscillatory source of this ‘number of items’ signal. At

present, there is no ‘online’ neural activity that has been

shown to directly correspond to the resolution of infor-

mation in WM. Though, some recent neuroimaging

approaches examining activity in V1 and the lateral

occipital complex have shown considerable potential in

this regard [33,34]. We see this as likely being the next

frontier in characterizing the capacity limits of this central

cognitive mechanism.
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