
BRIEF REPORT

Reducing failures of workingmemory with performance feedback

Kirsten C. S. Adam1
& Edward K. Vogel1

Published online: 9 March 2016
# Psychonomic Society, Inc. 2016

Abstract Fluctuations in attentional control can lead to fail-
ures of working memory (WM), in which the subject is no
better than chance at reporting items from a recent display. In
three experiments, we used a whole-report measure of visual
WM to examine the impact of feedback on the rate of failures.
In each experiment, subjects remembered an array of colored
items across a blank delay, and then reported the identity of
items using a whole-report procedure. In Experiment 1, we
gave subjects simple feedback about the number of items they
correctly identified at the end of each trial. In Experiment 2,
we gave subjects additional information about the cumulative
number of items correctly identified within each block.
Finally, in Experiment 3, we gave subjects weighted feedback
in which poor trials resulted in lost points and consistent suc-
cessful performance received Bstreak^ points. Surprisingly,
simple feedback (Exp. 1) was ineffective at improving average
performance or decreasing the rate of poor-performance trials.
Simple cumulative feedback (Exp. 2) modestly decreased
poor-performance trials (by 7 %). Weighted feedback pro-
duced the greatest benefits, decreasing the frequency of
poor-performance trials by 28 % relative to baseline perfor-
mance. This set of results demonstrates the usefulness of
whole-report WM measures for investigating the effects of
feedback on WM performance. Further, we showed that only

a feedback structure that specifically discouraged lapses using
negative feedback led to large reductions in WM failures.
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Introduction

Failures of attention are frequent and have unintended conse-
quences ranging in severity from variable reaction times on
simple laboratory tasks to fatal car accidents in the real world
(Reason, 2003; Robertson, Manly, Andrade, Baddeley, &
Yiend, 1997). Given that ongoing attentional fluctuations lead
to deficits in simple reaction time measures, the effect of im-
paired attention on demanding tasks can be even more exag-
gerated. Consistent with this idea, previous research has found
a strong relationship between working memory (WM) capacity
and propensity toward periods of mind wandering and failed
executive attention (McVay & Kane, 2012). Here, we investi-
gated the potential for feedback about task performance to re-
duce attentional failures during a difficult visual WM task.

Performance feedback might improve WM performance
for a variety of reasons. First, subjects are relatively unaware
of periods of inattention to the task at hand (Reichle,
Reineberg, & Schooler, 2010; Schooler et al., 2011), but
bringing subjects’ attentional state into awareness allows them
to re-engage (deBettencourt, Cohen, Lee, Norman, &
Turk-Browne, 2015). Performance feedback should alert sub-
jects that their current attentional state is not sufficient to per-
form well. In addition to alerting subjects to failures, feedback
may also improve performance by increasing subjects’ base-
line motivation and arousal levels. Cognitive feedback can act
as an extrinsic reward (Aron, 2004), and game-like visual
feedback can increase subjects’ intrinsic motivation
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(Miranda & Palmer, 2013). If subjects are relatively unmoti-
vated in typical laboratory settings, they may underperform
their true ability; providing feedback could increase task en-
gagement and overall performance levels.

To provide informative feedback to subjects, we must first
have a reliable indicator of trial-by-trial fluctuations in perfor-
mance. Performance fluctuations during simple attention tasks
have been extensively studied (Cohen & Maunsell, 2011;
Esterman, Noonan, Rosenberg, & DeGutis, 2013; Manly,
1999; Smallwood, Riby, Heim, & Davies, 2006; Unsworth
& McMillan, 2014; Weissman, Roberts, Visscher, &
Woldorff, 2006), but there are few observations of perfor-
mance fluctuations during complex WM tasks (Adam,
Mance, Fukuda, & Vogel, 2015). Trial-by-trial performance
fluctuations are difficult to measure in WM tasks because of
the partial-report nature of common WM measures. For ex-
ample, in a typical change-detection task, subjects are asked to
remember a large number of items (e.g., six to eight) and are
tested randomly on one of the items. However, capacity is
extremely limited, so subjects will remember only three to
four items on average. As such, even if a subject was
performing quite well (e.g., three items out of six) on 100 %
of trials, they would receive feedback that they were incorrect
on 50 % of trials. Such unreliable feedback is unlikely to be
informative to the subject.

Unlike change-detection tasks, recall tasks allow for
trial-by-trial feedback about the number of correctly recalled
items.We took advantage of a whole-report visualWM task to
test the effects of feedback. In this task, subjects report the
identity of all items in the array. Because all items are tested,
performance can be calculated for every trial. Additionally, by
holding set-size constant across all trials, fluctuations in mem-
ory performance can be observed without the confounding
factor of intermixed difficulty from multiple set-sizes. Using
this task, Adam et al. (2015) found that performance in the
whole-report task was highly predictive of typical partial-
report capacity measures, and that performance fluctuated
strongly from trial to trial. Importantly, these results revealed
that nearly all subjects have substantial numbers of WM fail-
ure trials, in which they perform no better than chance for the
set of six items.

Here, we designed a series of experiments to provide dif-
ferent amounts of information to subjects about their
trial-by-trial performance. In Experiment 1, we provided a
simple form of feedback: the number correct for the trial.
Simple feedback of this type is commonly used by researchers
with the rationale that the feedback will increase motivation
and task compliance. However, the effectiveness of such feed-
back is often not quantified. In Experiment 2, we added a
reminder of ongoing performance by tallying the number of
items correct for all trials within a block. After completing the
first block of trials, subjects tried to beat their personal Bhigh
score^ on subsequent blocks. We hypothesized that giving

subjects a long-term goal of improving their high score would
further boost performance. Finally, in Experiment 3, we used a
weighted points system instead of simple number of items
correct on the trial. With this weighted points system, subjects
lost points if they performed poorly and gained points if they
performed consistently well. Note, however, that the subjects
understood that these points were arbitrary and were not asso-
ciated with any financial payout or other outcome. Unlike the
other two feedback conditions, the weighted points system
was designed to reinforce a particular strategy; to perform
optimally, subjects needed to minimize the number of failure
trials. In the other two feedback conditions, subjects could
have instead attempted to maximize the number of stored
items on good trials without necessarily reducing the number
of poor trials. We predicted that specifically encouraging sub-
jects to reduce the number of failure trials would maximally
boost performance.

Materials and methods

Participants

All participants gave written informed consent according to
procedures approved by the University of Oregon institutional
review board. Participants were compensated for participation
with course credit or payment (US $10/h). Forty-five subjects
(21 male) participated in Experiment 1, 44 (22 male) in
Experiment 2, and 56 (23 male) in Experiment 3. Subjects
were excluded from analyses for non-compliance with task
instructions (one in Exp. 1, one in Exp. 2 and three in Exp.
3) or for leaving the experiment early (one in Exp. 1, and one
in Exp. 3).

Stimuli

Stimuli were generated in MATLAB (The MathWorks,
Natick, MA) using the Psychophysics toolbox (Brainard,
1997). Participants were seated approximately 60 cm from
an 18-in CRT monitor; distances are approximate as subjects
were not head-restrained. Stimuli were presented on a gray
background (RGB values: 127.5 127.5 127.5), and subjects
fixated a small dot (0.25° visual angle). In all experiments,
colored squares (2.5°) served as memoranda. Each square
could appear in one of nine colors, sampled without replace-
ment (RGB values: Red = 255 0 0; Green = 0 255 0; Blue = 0
0 255; Yellow = 255 255 0; Magenta = 255 0 255; Cyan = 0
255 255; Orange = 255 128 0; White = 255 255 255; Black =
1 1 1) within an area extending 12.8° horizontally and 9.6°
vertically from fixation. At response, a 3 × 3 grid of all nine
colors appeared at the location of each remembered item.
After response, a feedback screen displayed information about
task performance in size 24 Arial font.
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Procedures

Subjects completed a whole-report memory task in
Experiments 1, 2, and 3 (Adam et al., 2015). Trial events are
shown in Fig. 1a. Each trial began with a blank inter-trial
interval of 1000 ms. An array containing six colored squares
appeared for 250 ms, followed by a blank retention interval of
1000 ms. To respond, subjects used the mouse to click on
which color appeared at each of the six locations. Subjects
were required to respond to all items before the trial would
proceed. Trials were blocked within experiment into two con-
ditions, Bno feedback^ and Bfeedback.^ Condition order was
counter-balanced across participants to prevent confounding
order effects. As such, we will use the term Bfeedback first^ to
refer to subjects who received the feedback condition first and
Bno feedback first^ to refer to subjects who received the no-
feedback condition first. Subjects received 100 trials of each
condition in Experiment 1 (split into four within-condition
blocks), and 150 trials of each condition in Experiments 2
and 3 (split into five within-condition blocks). In between
blocks, subjects received a short break (30 s in Exps. 1 and
2, 1 min in Exp. 3). In all experiments, subjects were not
informed beforehand that there would be two experimental
conditions. In Experiments 1 and 2, subjects completed six
practice trials before beginning the first condition (two trials
each of set sizes one, two, and six). In Experiment 3, subjects
did not complete any separate practice trials.

In the Bno feedback^ condition, subjects saw a blank gray
screen after responding to all items, then clicked the mouse to
initiate the next trial. In the Bfeedback^ condition, subjects
saw a screen with text-based feedback about their perfor-
mance. After viewing the feedback, subjects clicked the
mouse to initiate the next trial. The main difference between
the experiments was the content displayed on the feedback
screen; an example of a typical feedback screen for each ex-
periment is shown in Fig. 1b.

In Experiment 1, subjects received simple feedback about
their performance (e.g. B3 correct^). In Experiment 2, in addi-
tion to simple feedback about the current trial, subjects received
information about their cumulative Bscore^within a block. The
cumulative score was calculated as the total number of correct
objects within the block. After the first block of the feedback
condition, subjects also saw their Bhigh score^, defined as the
highest total performance achieved within any single block.
Finally, in Experiment 3, subjects saw their current trial perfor-
mance, a weighted number of Bpoints^, and a cumulative score.
The cumulative score was calculated as the total number of
weighted points within each block. Subjects received –2 points
for 0 correct, –1 for 1 correct, 0 for 2 correct +1 for 3 correct, +2
for 4 correct and +3 for 5 or 6 correct (Table 1). In addition,
Bstreak^ bonuses were added to the weightings to emphasize
consistency. If subjects earned points (three or more correct) on
multiple trials in a row, a streak bonus was added to their score
equaling the number of good trials. For example, if a subject
got three items correct for five trials in a row, they would
receive 6 points in total on that trial (+1 for three correct, + 5
for the current streak). As in Experiment 2, subjects saw their
high score starting after the first block. In all three experiments,
subjects received verbal instructions that the feedback informa-
tion shown on the feedback screens in no way affected their
payment or course credit.

Results

Experiment 1: Simple feedback

Subjects reported an average number of 2.77 (SD = .54) items
correct in the no-feedback condition, and 2.82 (SD = .50)
items in the feedback condition, and the difference was not
significant, t(42) = 1.90, P = .06 , 95 % CI [–.003, .11]. Next,
we looked at the proportion of good- and poor-performance

Fig. 1 a,b Task illustration. a Sequence of events for each trial. b Example feedback screen for each Experiment

1522 Psychon Bull Rev (2016) 23:1520–1527



trials (defined as above-three and below-three correct,
respectively). Subjects reported more than three items
correct on 25.82 % (SD = 16.88 %) of trials in the
no-feedback condition versus 28.44 % (SD = 16.90 %)
of trials in the feedback condition. This difference was
modest but significant, indicating that subjects had
slightly more good-performance trials in the feedback
condition, t(42) = 2.43, P = .01, 95 % CI [.45, 4.8].
On the other hand, there was no reduction in the pro-
portion of poor-performance trials between the no-
feedback (39.95 %, SD = 19.50 %) and feedback
(38.05 %, SD = 17.10 %) conditions, t(42) = –1.52,
P = .14, 95 % CI [–4.4, .62]. Performance distributions
are shown in Fig. 2.

We also calculated a Bpercent change^ score for each sub-
ject to better visualize the impact of feedback on performance
since there were large individual differences in the baseline
rate of trial types in the no-feedback condition (Fig. 3).
Percent changewas calculated as the difference in the frequen-
cy of trials between the feedback and no-feedback conditions
divided by the frequency in the no-feedback condition. The
average percent change in good-performance trials was
+20.73 % (SD = 39.80 %) relative to baseline, and the percent
change in poor-performance trials was –.48 % (SD = 26.2 %).
Histograms of the full range of individuals’ change scores are
shown in Fig. S1 for Experiment 1 and all following
experiments.

Experiment 2: Cumulative simple feedback

Subjects reported an average number of 2.87 (SD = .51) items
correct in the no-feedback condition, and 3.02 (SD = .53)
items in the feedback condition, and subjects performed sig-
nificantly better in the feedback condition, t(42) = 4.27, P <
.001, 95 % CI [.08, .22]. The proportion of good-performance
trials was 27.90 % (SD = 16.10 %) in the no-feedback condi-
tion, and 32.57 % (SD = 16.72 %) in the feedback condition.
This difference was significant, indicating that subjects had
slightly more good-performance trials in the feedback condi-
tion, t(42) = 3.62, P < .001, 95 % CI [2.07, 7.28]. Similarly,
there was a small reduction in the proportion of poor-
performance trials between the no-feedback (35.69 %,
SD = 15.44 %) and feedback (31.72 %, SD = 13.89 %) con-
ditions, t(42) = –2.94, P = .005, 95 % CI [–6.7, –1.2].
Performance distributions are shown in Fig. 2. The average

percent change in good-performance trials was +30.57 % (SD
= 56.27 %), and the percent change in poor-performance trials
was –7.23 % (SD = 29.07 %; Fig. 3).

Table 1 Points assigned for trial outcomes (number of items correct)

Trial outcome 0 1 2 3 4 5 6

Simple feedback 0 1 2 3 4 5 6

Weighted feedback –2 –1 0 1 2 3 3

Fig. 2 Distributions of performance across experiments. Dotted lines
Performance in the feedback condition, solid lines performance in the
no-feedback condition in a Experiment 1, b Experiment 2, and c
Experiment 3. All error bars represent standard error of the mean
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Experiment 3: Cumulative weighted feedback

Subjects reported an average number of 2.95 (SD = .47) items
correct in the no-feedback condition and 3.26 (SD = .49) items
in the feedback condition, and subjects performed significantly
better in the feedback condition, t(51) = 6.70,P < .001, 95%CI
[.21, .40]. The average proportion of high performance trials
was 31.47% (SD = 16.85%) in the no-feedback condition, and
40.22 % (SD = 18.98 %) in the feedback condition. This dif-
ference was significant, indicating that subjects had more
good-performance trials in the feedback condition, t(51) =
5.92, P < .001, 95 % CI [5.78 11.72]. Similarly, there was a
large reduction in the proportion of poor-performance trials
between the no-feedback (32.85 %, SD = 15.11 %) and feed-
back (22.26 %, SD = 13.37 %) conditions, t(51) = –7.27, P <
.001, 95 % CI [–13.52, –7.67]. Change scores relative to base-
line rates are shown in Fig. 3 (full range in Fig. S1). The aver-
age percent change in good-performance trials was +37.56 %
(SD = 40.9 %), and the percent change in poor-performance
trials was –27.91 % (SD = 39.1 %).

Given the general shift in subjects’ performance away from
poor-performance trials, we wanted to further examine the
prevalence of extreme lapses (0 or 1 correct). During lapses,
subjects are at chance levels of performance for this task
(Adam et al., 2015), so detecting and correcting such trials
would be particularly impactful in applied settings. In partic-
ular, we wanted to investigate (1) how reliably individual sub-
jects reduced failure rates, and (2) whether the reduction in
failures was consistent across all feedback blocks. Subjects
had lapses during 10.49 % (SD = 7.04) of trials in the
no-feedback condition, and 5.86 % (SD = 4.97) of trials in
the feedback condition, and this difference is significant, t(51)
= –6.19, P < .001, 95 % CI [–6.13, –3.13]. Thus, subjects
showed on average a 33.56 % reduction (SD = 52.38) in their
lapse rate (0 or 1 correct). Figure 4a shows that almost all
subjects showed a lower rate of lapses during the feedback

than in the no-feedback condition, indicating that feedback
interventions are effective for both high- and low-
performing subjects. In addition, because the lowest-
performing subjects had the highest rate of lapses, the degree
of lapse reduction was negatively correlated with overall task
performance, r = –.48, P < .001, 95 % CI [–.24, –.67]
(Fig. 4b). However, this significant correlation was likely driv-
en by the near-floor rates of lapses for the high capacity sub-
jects. Previously, it was found that motivation and feedback
manipulations affected high- and low-capacity subjects equal-
ly (Heitz, Schrock, Payne, & Engle, 2008). Finally, we found
that performance is stable for blocks of the same condition (all
Cronbach’s alpha values > .78.) After a slight learning effect
from block 1–2, performance was stable from blocks 2–5 with
a marked shift when the condition changed in block 6 (Fig. 5).

Between experiments analyses

To compare the change in performance across experiments,
we calculated change scores (feedback–no feedback) for each
subject and ran a one-way ANOVA using Experiment as a
between-subjects factor. First, we looked at the change in
mean number of items correct and found a significant effect
of Experiment, F(2, 135) = 11.02, P < .001, η2p = .14. Post
hoc tests (Tukey’s HSD) revealed that the change in mean
performance was larger for Experiment 3 than for either
Experiment 1 (P < .001) or Experiment 2 (P = .014).
However, the change in mean performance between feedback
conditions was equivalent for Experiments 1 and 2 (P = .211).

Similarly, we examined the change in the proportion of
good- and poor-performance trials (calculated as proportion
in feedback condition minus the proportion in the no-feedback
condition). We found a significant effect of Experiment on the
proportion of good-performance trials, F(2,135) = 5.77, P =
.004, η2p = .08. Tukey’s HSD tests revealed a significant dif-
ference between Experiment 1 and Experiment 3 (P = .003)

Fig. 3 a–cAverage change in performance between the no-feedback and
feedback conditions. a Change in the mean number of items correct. b
Percent change in the prevalence of good-performance trials in the
feedback condition relative to prevalence in the no-feedback condition.

c Percent change in the prevalence of poor-performance trials in the
feedback condition relative to prevalence in the no-feedback condition.
All error bars represent standard error of the mean
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but no significant difference between Experiments 1 and 2 (P
= .54) or between Experiments 2 and 3 (P = .08). Finally, we
found a significant effect of Experiment on the proportion of
poor-performance trials, F(2, 135) = 11.45, P < .001, η2p =
.15. Post hoc tests (Tukey’s HSD) revealed that the feedback
in Experiment 3 led to a greater reduction in poor-
performance trials than either Experiment 1 (P < .001) or
Experiment 2 (P = .002). However, there was no difference
between Experiments 1 and 2 (P = .56).

Discussion

We have demonstrated that a behavioral feedback manipula-
tion can lead to global improvement in WM performance for

supra-capacity arrays. Critically, however, not all forms of
feedback led to the same level of improvement. These results
are an important reminder to test the effects of feedback ma-
nipulations. While feedback is often assumed by researchers
to always be beneficial, feedback interventions can sometimes
lead to no improvement, or even to a decline in performance
(Kluger & DeNisi, 1996). Moreover, the present results also
suggest that estimates of maximum performance may be
slightly underestimated under baseline motivational levels.

Somewhat surprisingly, providing subjects simple feed-
back about performance (Experiment 1) did not improve av-
erage performance, though this effect approached convention-
al significance (P = .06). The Experiment 1 feedback manip-
ulation was similar to the feedback condition in Heitz et al.
(2008), who similarly found only a small effect of feedback on

Fig. 5 Proportion of lapse trials (0 or 1 correct) over each block of
Experiment 3. Black bars Blocks in the no-feedback condition, gray
bars blocks in the feedback condition. Left panel Group of subjects

who received no feedback first, right panel group of subjects who re-
ceived feedback first.Dotted lineAverage lapse rate for blocks 2–5 during
the no-feedback condition in the left panel

Fig. 4 a,bChange in lapse rate for individual subjects in Experiment 3. a
Proportion of lapses (x-axis) is shown for individual subjects. Subjects are
sorted on the y-axis by their overall performance in the no-feedback
condition. White bars/black outlines Proportion of lapses in the no-
feedback condition, shaded bars proportion of lapses in the feedback
condition. Thus, if lapse rate is reduced in the feedback condition, the
corresponding bar appearswhite on the right-hand side. If lapse rate is not

reduced, then the corresponding bar is entirely shaded. Subjects in both
the top and bottom of the overall performance distribution show a large
reduction of lapses in the feedback condition relative to baseline lapse
rates. b The change in lapse rate across conditions is correlated with
overall task performance, likely because high-performing subjects have
lapse rates near floor in both conditions
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reading-span performance. In the present dataset, the marginal
difference in performance was driven exclusively by an in-
creased proportion of good-performance trials. Similarly, the
increase in good-performance trials in Experiment 2 was
much larger than the reduction in poor-performance trials.
This asymmetry suggests that subjects attempted a sub-
optimal strategy of maximizing the number of items held in
mind on good trials without attempting to reduce the frequen-
cy of failure trials. Overall, the persistence of lapse trials in
Experiments 1 and 2 suggests that lapses of attention remain
frequent and persistent in some cases where subjects are ex-
plicitly made aware of poor performance.

The weighted feedback manipulation in Experiment 3 was
the most effective, reducing poor-performance trials by 27 %.
Why was this manipulation so much more effective than
others? Streak bonuses and the conjunction of positive and
negative feedback were unique design features in
Experiment 3, and they could both affect performance dramat-
ically. Miranda and Palmer (2013) found that a visual feed-
back system with streaks and negative feedback increased
subjects’ subjective ratings of intrinsic motivation during a
visual search task. Increased intrinsic motivation as a mecha-
nism of improvement dovetails nicely with previous findings
that feedback serves as an extrinsic reward (Aron et al., 2004).
The conjunction of positive and negative feedback, in partic-
ular, may increase the effectiveness of feedbackmanipulations
by engaging both pathways of the dopaminergic reward sys-
tem (Frank, Seeberger, & O'Reilly, 2004). However, given the
present data, we cannot say whether the addition of streak
bonuses (emphasizing positive feedback) or negative feed-
back (punishing lapses) was most critical for performance
improvement in Experiment 3. These two types of feedback
are intertwined in the current design; successful streaks are
perfectly anti-predictive of negative feedback. Future experi-
ments are needed to disentangle the relative impact of each.

We would also like to emphasize the potential importance
of providing an attainable performance goal in Experiment 3.
Our prior work revealed that nearly all subjects are capable of
accurately reporting at least three items (Adam et al., 2015).
By setting a performance goal of three items, we encouraged
subjects to perform consistently over a series of trials, rather
than to maximize the number of items stored on individual
trials. Indeed, an inappropriate performance goal could under-
mine the motivational benefits of feedback. If the goal was too
easy (one item correct), then subjects would have incentive to
underachieve their capacity. Alternatively, if the goal was too
hard (six items correct), then subjects may become frustrated
and similarly underperform.

Finally, our results raise some interesting questions that
could be addressed by future studies. First, the observed feed-
back benefit dissipates shortly after the feedback is taken away
(Fig. S2). However, more extensive training with feedback
may help subjects learn to implement a lapse-reduction

strategy without ongoing feedback. Given that behavioral
feedback is relatively unobtrusive and inexpensive, there is
potential for such interventions in real-world settings.
Second, it will be important to disentangle the relative contri-
butions of positive feedback, negative feedback, and perfor-
mance goals to WM improvement. Finally, markers such as
pupil dilation (Unsworth & Robison, 2015), and frontal theta
power in EEG (Adam et al., 2015) may identify mechanisms
underlying the reduction of lapses, including changes in
arousal and consistency in the deployment of controlled
attention.
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